
Chapter 7

Matrix Models IV: Integral
Projection Models

“If people do not believe that mathematics is simple, it is only because they do not realize how complicated
life is.”

— John von Neumann

As seen in Chapter 5, MPMs may be estimated using functions representing vital rates, where these
vital rate functions may then be used to estimate each matrix element. We term this approach the
function-based MPM, because of its use of functions to estimate matrix elements. One reason that
this approach is very powerful is that it allows population ecologists to create simulations in which
vital rates themselves are manipulated, for example via altered climate relationships or management
regimes.

Easterling et al. (2000) proposed a special case of the function-based MPM called the integral
projection model (IPM). In integral projection models, the familiar projection equation nt+1 = Ant
changes to

𝑛(𝑘, 𝑡 + 1) = ∫
𝑈

𝐿
𝐾(𝑘, 𝑗)𝑛(𝑗, 𝑡)𝑑𝑗 (7.1)

where an individual in state 𝑗 in time 𝑡 either transitions to state 𝑘 or produces offspring in state 𝑘
in time 𝑡 + 1, 𝑛(𝑗, 𝑡)𝑑𝑗 refers to the number of individuals with their state in the range between 𝑗 and
𝑗+𝑑𝑗, 𝐿 and 𝑈 represent the lower and upper bounds of the state variable, and 𝐾(𝑘, 𝑗) is the projection
kernel 𝐾(𝑘, 𝑗) = 𝑃(𝑘, 𝑗) + 𝐹(𝑘, 𝑗). In this projection kernel, 𝑃(𝑘, 𝑗) represents the survival-transition
probability from state 𝑗 in time 𝑡 to state 𝑘 in time 𝑡 + 1, and 𝐹(𝑘, 𝑗) represents the production
of offspring in state 𝑘 in time 𝑡 + 1 by an individual in state 𝑗 in time 𝑡. Because this equation is
written as an integral as opposed to a discrete summation, it may appear to be quite different from
the matrix approaches that we have seen so far. Indeed, there are those who have attempted to use
these equations in their pure, integral forms, and when used analytically IPMs are not really MPMs.
However, in practice, IPMs are typically discretized so that they may be parameterized as matrices.
This discretization allows practitioners to use matrix approaches for analysis, because the projection
kernel in equation 7.1 becomes perfectly analogous to the discrete projection equation nt+1 = Ant.

Just as in other function-based MPMs, the IPM generally assumes that survival probabilities follow
a binomial distribution and so may be estimated via generalized linear models, generalized linear
mixed models, general additive models, or related approaches assuming a binomial response. Likewise,
probabilities of reproduction, observation, or maturity, should also follow a binomial response. We see
a difference in the estimation of the size probability, because IPMs require the use of a continuous size
metric. In fact, the “traditional” IPM assumes a Gaussian distribution for size, and the underlying
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assumptions of the Gaussian distribution make assumptions that may fail in many circumstances and
hence lead to biased results. A more flexible IPM approach allows the use of other distributions,
including continuous distributions such as the gamma distribution, and discrete distributions such as
the Poisson or negative binomial distributions when necessary. Package lefko3 allows all of these
distributions.

Discretized IPMs assume vital rate models that parameterize the main kernel populating the matrix
elements. Let’s review the fourteen vital rate models possible in lefko3:

1. Survival probability - This is the probability of surviving from occasion t to occasion t+1,
given that the individual is in stage 𝑗 in occasion t (and, if historical, in stage 𝑙 in occasion t-1).
In lefko3, this parameter may be modeled as a function of up to three size metrics, reproductive
status, patch, year, age, and individual identity, and a number of individual or environmental
covariates in occasions t and t-1. This parameter is required in all function-based matrices.

2. Observation probability - This is the probability of observation in occasion t+1 of an indi-
vidual in stage 𝑘 given survival from occasion t to occasion t+1. This parameter is only used
when at least one stage is technically not observable. For example, some plants are capable of
vegetative dormancy, in which case they are alive but do not necessarily sprout in all years. In
these cases, the probability of sprouting may be estimated as the observation probability. Note
that this probability does not refer to observer effort, and so should only be used to differentiate
completely unobservable stages where the observation status refers to an important biological
phenomenon, such as when individuals may be alive but have a size of zero. In lefko3, this
parameter may be modeled as a function of up to three size metrics, reproductive status, patch,
year, age, and individual identity, and a number of individual or environmental covariates in
occasions t and t-1.

3. Primary size transition probability - This is the probability of becoming size 𝑘 in occasion
t+1 assuming survival from occasion t to occasion t+1 and observation in that time. If multiple
size metrics are used, then this refers only to the first of these, which we may refer to as the
primary size variable. In lefko3, this parameter may be modeled as a function of up to three
size metrics, reproductive status, patch, year, age, and individual identity, and a number of
individual or environmental covariates in occasions t and t-1. This parameter is required in all
function-based size-classified matrices.

4. Secondary size transition probability - This is the probability of becoming size 𝑘 in occasion
t+1 assuming survival from occasion t to occasion t+1 and observation in that time, within a
second size metric used for classification in addition to the primary metric. In lefko3, this
parameter may be modeled as a function of up to three size metrics, reproductive status, patch,
year, age, and individual identity, and a number of individual or environmental covariates in
occasions t and t-1.

5. Tertiary size transition probability - This is the probability of becoming size 𝑘 in occasion
t+1 assuming survival from occasion t to occasion t+1 and observation in that time, within a
third size metric used for classification in addition to the primary and secondary metrics. In
lefko3, this parameter may be modeled as a function of up to three size metrics, reproductive
status, patch, year, age, and individual identity, and a number of individual or environmental
covariates in occasions t and t-1.

6. Reproduction probability - This is the probability of becoming reproductive in occasion t+1
given survival from occasion t to occasion t+1, and observation in that time. Note that this
should be used only if the researcher wishes to separate breeding from non-breeding mature
stages. If all adult stages are potentially reproductive and no separation of reproducing from
non-reproducing adults is required by the life history model, then this parameter should not be
estimated. In lefko3, this parameter may be modeled as a function of up to three size metrics,
reproductive status, patch, year, age, and individual identity, and a number of individual or
environmental covariates in occasions t and t-1.

7. Fecundity rate - Under the default setting, this is the rate of successful production of offspring
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in occasion t by individuals alive, observable, and reproductive in that time, and, if assuming a
pre-breeding model and sufficient information is provided in the dataset, the survival of those
offspring into occasion t+1 in whatever juvenile class is possible. Thus, the fecundity rate of seed-
producing plants might be split into seedlings, which are plants that germinated within a year
of seed production, and dormant seeds. Alternatively, it may be given only as produced fruits or
seeds, with the survival and germination of seeds provided elsewhere in the MPM development
process, such as within a supplement table. An additional setting allows fecundity rate to be
estimated using data provided for occasion t+1 instead of occasion t. In lefko3, this parameter
may be modeled as a function of up to three size metrics, reproductive status, patch, year, age,
and individual identity, and a number of individual or environmental covariates in occasions t
and t-1.

8. Juvenile survival probability - This is the probability of surviving from juvenile stage 𝑗 in
occasion t to occasion t+1. It is used only when the user wishes to model vital rates for a
single size-unclassified juvenile period separately from adults. In lefko3, this parameter may
be modeled as a function of up to three size metrics, patch, year, and individual identity, and a
number of individual or environmental covariates in occasions t and t-1.

9. Juvenile observation probability - This is the probability of observation in occasion t+1 of
an individual in juvenile stage 𝑗 in occasion t given survival from occasion t to occasion t+1. It is
used only when the user wishes to model vital rates for a single size-unclassified juvenile period
separately from adults. In lefko3, this parameter may be modeled as a function of up to three
size metrics, patch, year, and individual identity, and a number of individual or environmental
covariates in occasions t and t-1.

10. Juvenile primary size transition probability - This is the probability of becoming size-
classified stage 𝑘 in occasion t+1 assuming survival from juvenile stage 𝑗 in occasion t to occasion
t+1 and observation in that time. It is in terms of a single size metric. It is used only when
the user wishes to model vital rates for a single size-unclassified juvenile period separately from
adults. In lefko3, this parameter may be modeled as a function of up to three size metrics,
patch, year, and a number of individual or environmental covariates in occasions t and t-1, and
individual identity.

11. Juvenile secondary size transition probability - This is the probability of becoming size-
classified stage 𝑘 in occasion t+1 assuming survival from juvenile stage 𝑗 in occasion t to occasion
t+1 and observation in that time, in a secondary size metric in addition to the primary size metric.
It is used only when the user wishes to model vital rates for a single size-unclassified juvenile
period separately from adults. In lefko3, this parameter may be modeled as a function of
up to three size metrics, patch, year, and individual identity, and a number of individual or
environmental covariates in occasions t and t-1.

12. Juvenile tertiary size transition probability - This is the probability of becoming size-
classified stage 𝑘 in occasion t+1 assuming survival from juvenile stage 𝑗 in occasion t to occasion
t+1 and observation in that time, in a tertiary size metric in addition to the primary and
secondary size metrics. It is used only when the user wishes to model vital rates for a single size-
unclassified juvenile period separately from adults. In lefko3, this parameter may be modeled
as a function of up to three size metrics, patch, year, and individual identity, and a number of
individual or environmental covariates in occasions t and t-1.

13. Juvenile reproduction probability - This is the probability of reproducing in mature stage 𝑘
in occasion t+1 given survival from juvenile stage 𝑗 in occasion t to occasion t+1, and observation
in that time. It is used only when the user wishes to model vital rates for a single size-unclassified
juvenile period separately from adults. In lefko3, this parameter may be modeled as a function
of up to three size metrics, patch, year, and individual identity, and a number of individual or
environmental covariates in occasions t and t-1.

14. Juvenile maturity probability - This is the probability of becoming mature in occasion t+1
given survival from juvenile stage 𝑗 in occasion t to occasion t+1. It is used only when the user
wishes to model vital rates for a single size-unclassified juvenile period separately from adults.
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In lefko3, this parameter may be modeled as a function of up to three size metrics, patch, year,
and individual identity, and a number of individual or environmental covariates in occasions t
and t-1. Note that this parameter denotes transition to maturity.

Of these fourteen vital rates, most users will estimate at least parameters (1) survival probabil-
ity, (3) size transition probability, and (7) fecundity. These three are the default set for function
modelsearch(). Parameters (2) observation probability and (6) reproduction probability may be used
when some stages are included that are completely unobservable (and so do not have any size), or
that are mature but non-reproductive, respectively. Parameters (4) secondary size transition and (5)
tertiary size transition should only be used when size classification involves more than one size vari-
able. Parameters (8) through (14) should only be added if the dataset contains juvenile individuals
transitioning to maturity, and these juveniles live essentially as a single juvenile stage for some amount
of time before transitioning to maturity, or before transitioning to a stage that is size-classified in the
same manner as adult stages are. If juveniles can be classified by size similarly to adults (or at least
on the same scale), then only vital rates (1) through (7) should be used. If multiple juvenile stages
exist on a different size classification system than adults, then we advise the user to model only rates
(1) through (7) and to use stage groups to stratify vital rate models properly.

Let us assume that the state of the individual is represented by a continuous variable, such as
a continuous size metric. This continuous size metric will be used to estimate parameter (3), the
primary size transition probability. It may be Gaussian distributed, as is often assumed in IPMs
(Doak et al., 2021), or may follow a different continuous distribution such as the gamma distribution.
The survival-transition kernel 𝑃(𝑘, 𝑗) and the fecundity kernel 𝐹(𝑘, 𝑗) will estimated as in the function-
based MPM, as products of conditional rates or probabilities that are themselves estimated via linear
models, additive models, or some other function-based approach. How, then, is the primary size
transition probability estimated?

In practice, the continuous state variable is broken down into a series of continuous domains,
each with its own midpoint and upper and lower bounds. Individual domains under the Gaussian
and gamma distributions are shown in figures 7.1 a and d, respectively. The domain midpoints are
sometimes referred to as mesh points, and together with their upper and lower bounds they compose
a series of size bins of generally equal size. To approximate a continuous size, we choose a rather high
number of size bins, 𝑚, perhaps on the order of 100 or even more.

7.1 Midpoint method vs. cumulative density function (CDF)
There are several methods to estimate the size transition probabilities associated with each size bin.
The original method developed is referred to as the midpoint method (Doak et al., 2021). It is the
default in packages such as IPMpack and in some published guides to IPM creation (Metcalf et al.,
2013; Merow et al., 2014). The mesh points are then defined as 𝑗𝑖 = 𝐿 + (𝑖 − 0.5)ℎ, where 𝑖 is the
set of integers from 1 to 𝑚 (𝑖 = 1, 2, ..., 𝑚), 𝐿 is the lower state bound as before, and ℎ is the width
of the state bin or size bin, given as ℎ = (𝑈 − 𝐿)/𝑚. If each kernel is composed of a vital rate
function assuming some sort of probability distribution, and size is distributed on a Gaussian, gamma,
or other continuous distribution, then ℎ accounts for the area under the distribution density curve for
the corresponding vital rate contributing to the kernel at each midpoint size value used in the model
(figures 7.1 b and e). If we think of the integral as being approximated by a series of rectangles under
the function being integrated, then ℎ accounts for the width of the rectangle in the area approximation.
Thus, we have the following.

𝑛(𝑥𝑗, 𝑡 + 1) = ℎ
𝑚

∑
𝑖=1

𝐾(𝑥𝑗, 𝑥𝑖)𝑛(𝑥𝑖, 𝑡) (7.2)
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Figure 7.1: Shaded regions indicate the true size transition probability involved in transition (a,d), the
estimated size transition probability via the midpoint method (b,e), and the estimated size transition
probability via CDF (c,f) for the Gaussian (a-c) and gamma (d-f) distributions.
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Doak et al. (2021) pointed out that the midpoint method yields biased results, often overestimating
size transition probabilities. They proposed a second method based on the cumulative density function
associated with the continuous distribution being used. We will call this the CDF method here. In
this method, the cumulative probability associated with the lower and higher boundaries of the size bin
are first calculated. Then, the cumulative probability associated with the lower boundary is subtracted
from the cumulative probability associated with the higher boundary, yielding the exact probability
associated with the size bin itself (figures 7.1 c and f). This method does not yield biased results, and
so is the default method used in lefko3 (although the midpoint method is available as an option).

The practical impact is that this approach has us creating size bins, just as in the function-based
approach. If we have created size bins, then we have essentially created size-classified life history stages.
Thus, equation 7.2 can be treated as a matrix projection, perfectly analogous to nt+1 = Knt. So from a
practical standpoint, an integral projection model is simply a function-based matrix projection model
in which a continuous size metric determines demography. Indeed, Ellner and Rees (2006) further
proposed a generalization allowing IPMs to be developed with discrete stages in some portions of
the life history, referring to this as a complex integral projection model. So in practice, there
is now virtually no practical difference between IPMs and function-based MPMs, although there are
theoretical differences due to the assumption of integrals over continuous size in the former.

7.2 Creating IPMs in lefko3
How do we create IPMs in package lefko3? This turns out to be quite easy. To illustrate the process,
we will use the Lathyrus vernus dataset (see section 1.6.2). In this exercise, we will create both
ahistorical and historical IPMs.

First, we will clear memory and take a look at the dataset.

rm(list=ls(all=TRUE))

library(lefko3)
data(lathyrus)
summary(lathyrus)
> SUBPLOT GENET Volume88 lnVol88
> Min. :1.000 Min. : 1.0 Min. : 3.4 Min. :1.200
> 1st Qu.:2.000 1st Qu.: 48.0 1st Qu.: 63.0 1st Qu.:4.100
> Median :3.000 Median : 97.0 Median : 732.5 Median :6.600
> Mean :3.223 Mean :110.2 Mean : 749.4 Mean :5.538
> 3rd Qu.:4.000 3rd Qu.:167.5 3rd Qu.:1025.5 3rd Qu.:6.900
> Max. :6.000 Max. :284.0 Max. :7032.0 Max. :8.900
> NA's :404 NA's :404
> FCODE88 Flow88 Intactseed88 Dead1988 Dormant1988
> Min. :0.0000 Min. : 1.00 Min. : 0 Mode:logical Mode:logical
> 1st Qu.:0.0000 1st Qu.: 4.00 1st Qu.: 0 NA's:1119 NA's:1119
> Median :0.0000 Median : 8.00 Median : 0
> Mean :0.3399 Mean :11.86 Mean : 3
> 3rd Qu.:1.0000 3rd Qu.:15.00 3rd Qu.: 4
> Max. :1.0000 Max. :66.00 Max. :34
> NA's :404 NA's :910 NA's :875
> Missing1988 Seedling1988 Volume89 lnVol89
> Mode:logical Min. :1.000 Min. : 1.8 Min. :0.600
> NA's:1119 1st Qu.:2.000 1st Qu.: 15.6 1st Qu.:2.700
> Median :2.000 Median : 118.8 Median :4.800
> Mean :2.144 Mean : 573.3 Mean :4.855
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> 3rd Qu.:3.000 3rd Qu.: 968.8 3rd Qu.:6.900
> Max. :3.000 Max. :6539.4 Max. :8.800
> NA's :1022 NA's :294 NA's :294
> FCODE89 Flow89 Intactseed89 Dead1989
> Min. :0.0000 Min. : 1.00 Min. : 0.000 Min. :1
> 1st Qu.:0.0000 1st Qu.: 5.00 1st Qu.: 0.000 1st Qu.:1
> Median :0.0000 Median :11.00 Median : 5.000 Median :1
> Mean :0.2667 Mean :14.88 Mean : 8.273 Mean :1
> 3rd Qu.:1.0000 3rd Qu.:20.00 3rd Qu.:13.000 3rd Qu.:1
> Max. :1.0000 Max. :97.00 Max. :66.000 Max. :1
> NA's :294 NA's :906 NA's :899 NA's :1077
> Dormant1989 Missing1989 Seedling1989 Volume90 lnVol90
> Min. :1 Min. :1 Min. :1.000 Min. : 2.1 Min. :0.700
> 1st Qu.:1 1st Qu.:1 1st Qu.:2.000 1st Qu.: 12.6 1st Qu.:2.500
> Median :1 Median :1 Median :2.000 Median : 61.0 Median :4.100
> Mean :1 Mean :1 Mean :2.136 Mean : 244.1 Mean :4.207
> 3rd Qu.:1 3rd Qu.:1 3rd Qu.:2.000 3rd Qu.: 295.2 3rd Qu.:5.700
> Max. :1 Max. :1 Max. :3.000 Max. :4242.8 Max. :8.400
> NA's :1046 NA's :1112 NA's :1001 NA's :245 NA's :245
> FCODE90 Flow90 Intactseed90 Dead1990
> Min. :0.0000 Min. : 1.000 Min. : 0.000 Min. :1
> 1st Qu.:0.0000 1st Qu.: 3.000 1st Qu.: 0.000 1st Qu.:1
> Median :0.0000 Median : 6.000 Median : 0.000 Median :1
> Mean :0.1581 Mean : 8.104 Mean : 2.514 Mean :1
> 3rd Qu.:0.0000 3rd Qu.:10.750 3rd Qu.: 1.000 3rd Qu.:1
> Max. :1.0000 Max. :54.000 Max. :37.000 Max. :1
> NA's :246 NA's :985 NA's :981 NA's :1007
> Dormant1990 Missing1990 Seedling1990 Volume91 lnVol91
> Min. :1 Min. :1 Min. :1.000 Min. : 4.0 Min. :1.400
> 1st Qu.:1 1st Qu.:1 1st Qu.:2.000 1st Qu.: 12.0 1st Qu.:2.500
> Median :1 Median :1 Median :2.000 Median : 118.5 Median :4.800
> Mean :1 Mean :1 Mean :2.186 Mean : 418.7 Mean :4.642
> 3rd Qu.:1 3rd Qu.:1 3rd Qu.:2.000 3rd Qu.: 689.7 3rd Qu.:6.500
> Max. :1 Max. :1 Max. :3.000 Max. :6645.8 Max. :8.800
> NA's :1054 NA's :1105 NA's :1049 NA's :305 NA's :305
> FCODE91 Flow91 Intactseed91 Dead1991 Dormant1991
> Min. :0.0000 Min. : 1.00 Min. : 0.000 Min. :1 Min. :1
> 1st Qu.:0.0000 1st Qu.: 4.00 1st Qu.: 0.000 1st Qu.:1 1st Qu.:1
> Median :0.0000 Median : 8.00 Median : 3.500 Median :1 Median :1
> Mean :0.2525 Mean :11.12 Mean : 5.805 Mean :1 Mean :1
> 3rd Qu.:1.0000 3rd Qu.:15.00 3rd Qu.:10.000 3rd Qu.:1 3rd Qu.:1
> Max. :1.0000 Max. :48.00 Max. :48.000 Max. :1 Max. :1
> NA's :307 NA's :954 NA's :919 NA's :925 NA's :1034
> Missing1991 Seedling1991
> Min. :1 Min. :1.000
> 1st Qu.:1 1st Qu.:2.000
> Median :1 Median :2.000
> Mean :1 Mean :1.973
> 3rd Qu.:1 3rd Qu.:2.000
> Max. :1 Max. :3.000
> NA's :1095 NA's :1082
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This dataset includes information on 1,119 individuals, so there are 1,119 rows with data. There are
38 columns. The first two columns give identifying information about each individual (SUBPLOT refers
to the patch, and GENET refers to individual identity), with each individual’s data entirely restricted
to one row. This is followed by four sets of nine columns, each named VolumeXX, lnVolXX, FCODEXX,
FlowXX, IntactseedXX, Dead19XX, DormantXX, Missing19XX, and SeedlingXX, where XX corresponds
to the year of observation and with years organized consecutively. Thus, columns 3-11 refer to year
1988, columns 12-20 refer to year 1989, etc.

7.2.1 Developing stageframes for IPMs
First, we will create a stageframe for this dataset. We will base our stageframe on the life history
model provided in Ehrlén (2000), but use a different size classification based on leaf volume to allow
IPM construction and make all mature stages other than vegetative dormancy reproductive (figure
7.2).

Figure 7.2: Life history model of Lathyrus vernus. Not all adult classes are shown. Survival transitions
are indicated with solid arrows, while fecundity transitions are indicated with dashed arrows.

In the stageframe code below, we show that we want an IPM by choosing two stages that serve as
the size limits for the IPM’s discretized size bin classification. These two size classes should have
exactly the same characteristics in the stageframe other than size. The sizes input into the
sizes vector for these two stages should not be midpoints. Instead, the size for the lower limit should
be the lower limit of the minimum size bin, while the size input for the upper limit should be the upper
limit of the maximum size bin. By choosing these two size limits, we can skip adding and describing
the many size classes that will fall between these limits - function sf_create() will create all of these
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for us. We mark these limits in the vector that we load into the stagenames option using the string
"ipm". We then input all other characteristics for these size bins, such as observation status, maturity
status, reproductive status, and these characteristics must be the same for both the minimum and
maximum size bins. Package lefko3 will then create and name all IPM size classes according to its
own conventions. The default number of size classes is 100 bins, and this can be altered using the
ipmbins option. Note that this is essentially the same procedure described in section 2.4.

sizevector <- c(0, 100, 0, 1, 7100)
stagevector <- c("Sd", "Sdl", "Dorm", "ipm", "ipm")
repvector <- c(0, 0, 0, 1, 1)
obsvector <- c(0, 1, 0, 1, 1)
matvector <- c(0, 0, 1, 1, 1)
immvector <- c(1, 1, 0, 0, 0)
propvector <- c(1, 0, 0, 0, 0)
indataset <- c(0, 1, 1, 1, 1)
binvec <- c(0, 100, 0.5, 1, 1)
comments <- c("Dormant seed", "Seedling", "Dormant", "ipm adult stage",

"ipm adult stage")

lathframeipm <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, propstatus = propvector,
immstatus = immvector, matstatus = matvector, comments = comments,
indataset = indataset, binhalfwidth = binvec, ipmbins = 100, roundsize = 3)

dim(lathframeipm)
> [1] 103 29

This stageframe has 103 stages - dormant seed, seedling, vegetative dormancy, and 100 size-classified
adult stages. Let’s look at just a few key columns.

lathframeipm[,c("stage", "size", "sizebin_min", "sizebin_max", "comments")]
> stage size sizebin_min sizebin_max comments
> 1 Sd 0.000 0.00 0.00 Dormant seed
> 2 Sdl 100.000 0.00 200.00 Seedling
> 3 Dorm 0.000 -0.50 0.50 Dormant
> 4 sza_36.495_0 36.495 1.00 71.99 ipm adult stage
> 5 sza_107.48_0 107.485 71.99 142.98 ipm adult stage
> 6 sza_178.47_0 178.475 142.98 213.97 ipm adult stage
> 7 sza_249.46_0 249.465 213.97 284.96 ipm adult stage
> 8 sza_320.45_0 320.455 284.96 355.95 ipm adult stage
> 9 sza_391.44_0 391.445 355.95 426.94 ipm adult stage
> 10 sza_462.43_0 462.435 426.94 497.93 ipm adult stage
> 11 sza_533.42_0 533.425 497.93 568.92 ipm adult stage
> 12 sza_604.41_0 604.415 568.92 639.91 ipm adult stage
> 13 sza_675.40_0 675.405 639.91 710.90 ipm adult stage
> 14 sza_746.39_0 746.395 710.90 781.89 ipm adult stage
> 15 sza_817.38_0 817.385 781.89 852.88 ipm adult stage
> 16 sza_888.37_0 888.375 852.88 923.87 ipm adult stage
> 17 sza_959.36_0 959.365 923.87 994.86 ipm adult stage
> 18 sza_1030.3_0 1030.355 994.86 1065.85 ipm adult stage
> 19 sza_1101.3_0 1101.345 1065.85 1136.84 ipm adult stage
> 20 sza_1172.3_0 1172.335 1136.84 1207.83 ipm adult stage
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> 21 sza_1243.3_0 1243.325 1207.83 1278.82 ipm adult stage
> 22 sza_1314.3_0 1314.315 1278.82 1349.81 ipm adult stage
> 23 sza_1385.3_0 1385.305 1349.81 1420.80 ipm adult stage
> 24 sza_1456.2_0 1456.295 1420.80 1491.79 ipm adult stage
> 25 sza_1527.2_0 1527.285 1491.79 1562.78 ipm adult stage
> 26 sza_1598.2_0 1598.275 1562.78 1633.77 ipm adult stage
> 27 sza_1669.2_0 1669.265 1633.77 1704.76 ipm adult stage
> 28 sza_1740.2_0 1740.255 1704.76 1775.75 ipm adult stage
> 29 sza_1811.2_0 1811.245 1775.75 1846.74 ipm adult stage
> 30 sza_1882.2_0 1882.235 1846.74 1917.73 ipm adult stage
> 31 sza_1953.2_0 1953.225 1917.73 1988.72 ipm adult stage
> 32 sza_2024.2_0 2024.215 1988.72 2059.71 ipm adult stage
> 33 sza_2095.2_0 2095.205 2059.71 2130.70 ipm adult stage
> 34 sza_2166.1_0 2166.195 2130.70 2201.69 ipm adult stage
> 35 sza_2237.1_0 2237.185 2201.69 2272.68 ipm adult stage
> 36 sza_2308.1_0 2308.175 2272.68 2343.67 ipm adult stage
> 37 sza_2379.1_0 2379.165 2343.67 2414.66 ipm adult stage
> 38 sza_2450.1_0 2450.155 2414.66 2485.65 ipm adult stage
> 39 sza_2521.1_0 2521.145 2485.65 2556.64 ipm adult stage
> 40 sza_2592.1_0 2592.135 2556.64 2627.63 ipm adult stage
> 41 sza_2663.1_0 2663.125 2627.63 2698.62 ipm adult stage
> 42 sza_2734.1_0 2734.115 2698.62 2769.61 ipm adult stage
> 43 sza_2805.1_0 2805.105 2769.61 2840.60 ipm adult stage
> 44 sza_2876.0_0 2876.095 2840.60 2911.59 ipm adult stage
> 45 sza_2947.0_0 2947.085 2911.59 2982.58 ipm adult stage
> 46 sza_3018.0_0 3018.075 2982.58 3053.57 ipm adult stage
> 47 sza_3089.0_0 3089.065 3053.57 3124.56 ipm adult stage
> 48 sza_3160.0_0 3160.055 3124.56 3195.55 ipm adult stage
> 49 sza_3231.0_0 3231.045 3195.55 3266.54 ipm adult stage
> 50 sza_3302.0_0 3302.035 3266.54 3337.53 ipm adult stage
> 51 sza_3373.0_0 3373.025 3337.53 3408.52 ipm adult stage
> 52 sza_3444.0_0 3444.015 3408.52 3479.51 ipm adult stage
> 53 sza_3515.0_0 3515.005 3479.51 3550.50 ipm adult stage
> 54 sza_3585.9_0 3585.995 3550.50 3621.49 ipm adult stage
> 55 sza_3656.9_0 3656.985 3621.49 3692.48 ipm adult stage
> 56 sza_3727.9_0 3727.975 3692.48 3763.47 ipm adult stage
> 57 sza_3798.9_0 3798.965 3763.47 3834.46 ipm adult stage
> 58 sza_3869.9_0 3869.955 3834.46 3905.45 ipm adult stage
> 59 sza_3940.9_0 3940.945 3905.45 3976.44 ipm adult stage
> 60 sza_4011.9_0 4011.935 3976.44 4047.43 ipm adult stage
> 61 sza_4082.9_0 4082.925 4047.43 4118.42 ipm adult stage
> 62 sza_4153.9_0 4153.915 4118.42 4189.41 ipm adult stage
> 63 sza_4224.9_0 4224.905 4189.41 4260.40 ipm adult stage
> 64 sza_4295.8_0 4295.895 4260.40 4331.39 ipm adult stage
> 65 sza_4366.8_0 4366.885 4331.39 4402.38 ipm adult stage
> 66 sza_4437.8_0 4437.875 4402.38 4473.37 ipm adult stage
> 67 sza_4508.8_0 4508.865 4473.37 4544.36 ipm adult stage
> 68 sza_4579.8_0 4579.855 4544.36 4615.35 ipm adult stage
> 69 sza_4650.8_0 4650.845 4615.35 4686.34 ipm adult stage
> 70 sza_4721.8_0 4721.835 4686.34 4757.33 ipm adult stage
> 71 sza_4792.8_0 4792.825 4757.33 4828.32 ipm adult stage
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> 72 sza_4863.8_0 4863.815 4828.32 4899.31 ipm adult stage
> 73 sza_4934.8_0 4934.805 4899.31 4970.30 ipm adult stage
> 74 sza_5005.7_0 5005.795 4970.30 5041.29 ipm adult stage
> 75 sza_5076.7_0 5076.785 5041.29 5112.28 ipm adult stage
> 76 sza_5147.7_0 5147.775 5112.28 5183.27 ipm adult stage
> 77 sza_5218.7_0 5218.765 5183.27 5254.26 ipm adult stage
> 78 sza_5289.7_0 5289.755 5254.26 5325.25 ipm adult stage
> 79 sza_5360.7_0 5360.745 5325.25 5396.24 ipm adult stage
> 80 sza_5431.7_0 5431.735 5396.24 5467.23 ipm adult stage
> 81 sza_5502.7_0 5502.725 5467.23 5538.22 ipm adult stage
> 82 sza_5573.7_0 5573.715 5538.22 5609.21 ipm adult stage
> 83 sza_5644.7_0 5644.705 5609.21 5680.20 ipm adult stage
> 84 sza_5715.6_0 5715.695 5680.20 5751.19 ipm adult stage
> 85 sza_5786.6_0 5786.685 5751.19 5822.18 ipm adult stage
> 86 sza_5857.6_0 5857.675 5822.18 5893.17 ipm adult stage
> 87 sza_5928.6_0 5928.665 5893.17 5964.16 ipm adult stage
> 88 sza_5999.6_0 5999.655 5964.16 6035.15 ipm adult stage
> 89 sza_6070.6_0 6070.645 6035.15 6106.14 ipm adult stage
> 90 sza_6141.6_0 6141.635 6106.14 6177.13 ipm adult stage
> 91 sza_6212.6_0 6212.625 6177.13 6248.12 ipm adult stage
> 92 sza_6283.6_0 6283.615 6248.12 6319.11 ipm adult stage
> 93 sza_6354.6_0 6354.605 6319.11 6390.10 ipm adult stage
> 94 sza_6425.5_0 6425.595 6390.10 6461.09 ipm adult stage
> 95 sza_6496.5_0 6496.585 6461.09 6532.08 ipm adult stage
> 96 sza_6567.5_0 6567.575 6532.08 6603.07 ipm adult stage
> 97 sza_6638.5_0 6638.565 6603.07 6674.06 ipm adult stage
> 98 sza_6709.5_0 6709.555 6674.06 6745.05 ipm adult stage
> 99 sza_6780.5_0 6780.545 6745.05 6816.04 ipm adult stage
> 100 sza_6851.5_0 6851.535 6816.04 6887.03 ipm adult stage
> 101 sza_6922.5_0 6922.525 6887.03 6958.02 ipm adult stage
> 102 sza_6993.5_0 6993.515 6958.02 7029.01 ipm adult stage
> 103 sza_7064.5_0 7064.505 7029.01 7100.00 ipm adult stage

The function sf_create() has created our mesh points and associated size bins. This is in addition
to the discrete stages covering the dormant seed, seedling, and dormant adult stages. Of course, we
could have made this even more complex. For example, we could have created two sets of stages to use
as the upper and lower bounds of two sets of continuous size states that differ in some key characteristic,
such as reproductive status. We also could have set up the IPM using two or three different size metrics
and used the ipm option within each or only some of them. This function provides a great deal of
flexibility and power to create exactly the life history model that you may want.

7.2.2 Formatting demographic data and testing distribution assumptions
Next, we will format the data into hfv format. Because this is an IPM, we need to estimate linear
models of vital rates. This will require us either to fix or to remove NAs in size and fecundity, so we
will set NAas0 = TRUE. We will also set NRasRep = TRUE because we will assume that all adult stages
other than dormancy are reproductive, and there are mature individuals in the dataset that do not
reproduce but need to be included in reproductive stages (setting this option to TRUE makes sure that
the reproductive status of non-reproductive individuals in potentially reproductive stages is set to 1,
although the actual fecundity is not altered). Finally, we will ignore patches marked in the dataset
and estimate matrices only for the full population in order to preserve statistical power for vital rate
modeling in historical IPM analysis.
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In the input to verticalize3() below, we utilize a repeating pattern of variable names arranged
in the same order for each monitoring occasion. This arrangement allows us to enter only the first
variable in each set, as long as noyears and blocksize are set properly and no gaps or shuffles appear
in the dataset. The data management functions that we have created for lefko3 do not require
such repeating patterns, but they do make the required input in the function much shorter and more
succinct. Note also that we will use a new individual identity variable that incorporates the patch
identity (indiv_id), to prevent repeat individual identities across patches.

lathyrus$indiv_id <- paste(lathyrus$SUBPLOT, lathyrus$GENET)

lathvertipm <- verticalize3(lathyrus, noyears = 4, firstyear = 1988,
individcol = "indiv_id", blocksize = 9, juvcol = "Seedling1988",
sizeacol = "Volume88", repstracol = "FCODE88", fecacol = "Intactseed88",
deadacol = "Dead1988", nonobsacol = "Dormant1988", stageassign = lathframeipm,
stagesize = "sizea", censorcol = "Missing1988", censorkeep = NA,
censorRepeat = TRUE, censor = TRUE, NAas0 = TRUE, NRasRep = TRUE)

summary_hfv(lathvertipm)
>
> This hfv dataset contains 2527 rows, 42 variables, 1 population,
> 1 patch, 1053 individuals, and 3 time steps.
> rowid popid patchid individ year2
> Min. : 1.0 :2527 :2527 Length:2527 Min. :1988
> 1st Qu.: 237.0 Class :character 1st Qu.:1988
> Median : 522.0 Mode :character Median :1989
> Mean : 537.3 Mean :1989
> 3rd Qu.: 820.5 3rd Qu.:1990
> Max. :1118.0 Max. :1990
> firstseen lastseen obsage obslifespan sizea1
> Min. : 0 Min. : 0 Min. :1.000 Min. :0.000 Min. : 0.0
> 1st Qu.:1988 1st Qu.:1991 1st Qu.:1.000 1st Qu.:2.000 1st Qu.: 0.0
> Median :1988 Median :1991 Median :2.000 Median :3.000 Median : 9.0
> Mean :1979 Mean :1981 Mean :1.822 Mean :2.437 Mean : 387.3
> 3rd Qu.:1988 3rd Qu.:1991 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.: 624.6
> Max. :1990 Max. :1991 Max. :3.000 Max. :3.000 Max. :7032.0
> repstra1 feca1 juvgiven1 obsstatus1
> Min. :0.0000 Min. : 0.0000 Min. :0.00000 Min. :0.0000
> 1st Qu.:0.0000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.:0.0000
> Median :0.0000 Median : 0.0000 Median :0.00000 Median :1.0000
> Mean :0.1805 Mean : 0.9889 Mean :0.06292 Mean :0.5548
> 3rd Qu.:0.0000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.:1.0000
> Max. :1.0000 Max. :66.0000 Max. :1.00000 Max. :1.0000
> repstatus1 fecstatus1 matstatus1 alive1
> Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000
> 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000
> Median :0.0000 Median :0.00000 Median :1.0000 Median :1.0000
> Mean :0.1805 Mean :0.08983 Mean :0.5204 Mean :0.5833
> 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.0000
> Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000
> stage1 stage1index sizea2 repstra2
> Length:2527 Min. : 0.000 Min. : 0.0 Min. :0.000
> Class :character 1st Qu.: 0.000 1st Qu.: 12.6 1st Qu.:0.000
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> Mode :character Median : 3.000 Median : 105.6 Median :0.000
> Mean : 7.405 Mean : 480.8 Mean :0.237
> 3rd Qu.: 12.000 3rd Qu.: 732.5 3rd Qu.:0.000
> Max. :103.000 Max. :7032.0 Max. :1.000
> feca2 juvgiven2 obsstatus2 repstatus2
> Min. : 0.00 Min. :0.0000 Min. :0.0000 Min. :0.000
> 1st Qu.: 0.00 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.000
> Median : 0.00 Median :0.0000 Median :1.0000 Median :0.000
> Mean : 1.14 Mean :0.1112 Mean :0.9454 Mean :0.237
> 3rd Qu.: 0.00 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:0.000
> Max. :66.00 Max. :1.0000 Max. :1.0000 Max. :1.000
> fecstatus2 matstatus2 alive2 stage2
> Min. :0.0000 Min. :0.0000 Min. :1 Length:2527
> 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1 Class :character
> Median :0.0000 Median :1.0000 Median :1 Mode :character
> Mean :0.1053 Mean :0.8888 Mean :1
> 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1
> Max. :1.0000 Max. :1.0000 Max. :1
> stage2index sizea3 repstra3 feca3 juvgiven3
> Min. : 2.00 Min. : 0.0 Min. :0.000 Min. : 0.00 Min. :0
> 1st Qu.: 4.00 1st Qu.: 10.0 1st Qu.:0.000 1st Qu.: 0.00 1st Qu.:0
> Median : 5.00 Median : 72.0 Median :0.000 Median : 0.00 Median :0
> Mean : 10.12 Mean : 389.7 Mean :0.218 Mean : 1.29 Mean :0
> 3rd Qu.: 14.00 3rd Qu.: 543.4 3rd Qu.:0.000 3rd Qu.: 0.00 3rd Qu.:0
> Max. :103.00 Max. :6645.8 Max. :1.000 Max. :66.00 Max. :0
> obsstatus3 repstatus3 fecstatus3 matstatus3
> Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :1
> 1st Qu.:1.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:1
> Median :1.0000 Median :0.000 Median :0.0000 Median :1
> Mean :0.8346 Mean :0.218 Mean :0.1116 Mean :1
> 3rd Qu.:1.0000 3rd Qu.:0.000 3rd Qu.:0.0000 3rd Qu.:1
> Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1
> alive3 stage3 stage3index
> Min. :0.0000 Length:2527 Min. : 0.000
> 1st Qu.:1.0000 Class :character 1st Qu.: 4.000
> Median :1.0000 Mode :character Median : 5.000
> Mean :0.9224 Mean : 8.735
> 3rd Qu.:1.0000 3rd Qu.:11.000
> Max. :1.0000 Max. :97.000

Before we move on to the next steps in analysis, let’s take a closer look at fecundity. In this dataset,
fecundity is mostly a count of intact seeds, and only differs in six cases where the seed output was
estimated based on other models. To see this, try the following code.

writeLines(paste0("Length of fecundity in t+1: ", length(lathvertipm$feca3)))
> Length of fecundity in t+1: 2527
writeLines(paste0("Total non-integer entries in fecundity in occasion t+1: ",
length(which(lathvertipm$feca3 != round(lathvertipm$feca3)))))

> Total non-integer entries in fecundity in occasion t+1: 0
writeLines(paste0("\nLength of fecundity in t: ", length(lathvertipm$feca2)))
>
> Length of fecundity in t: 2527
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writeLines(paste0("Total non-integer entries in fecundity in occasion t: ",
length(which(lathvertipm$feca2 != round(lathvertipm$feca2)))))

> Total non-integer entries in fecundity in occasion t: 6
writeLines(paste0("\nLength of fecundity in t-1: ", length(lathvertipm$feca1)))
>
> Length of fecundity in t-1: 2527
writeLines(paste0("Total non-integer entries in fecundity in occasion t-1: ",
length(which(lathvertipm$feca1 != round(lathvertipm$feca1)))))

> Total non-integer entries in fecundity in occasion t-1: 6

We see that we have quite a bit of fecundity data, and that it is overwhelmingly but not exclusively
integer. So, we can either treat fecundity as a continuous variable, or round the values and treat
fecundity as a count variable. We will choose the latter approach in this analysis.

lathvertipm$feca3 <- round(lathvertipm$feca3)
lathvertipm$feca2 <- round(lathvertipm$feca2)
lathvertipm$feca1 <- round(lathvertipm$feca1)

Let’s now look at size. Ideally, we would assume the Gaussian distribution for this continuous variable.
However, strong skew might recommend the gamma distribution. Let’s view a density plot (figure
7.3).

plot(density(lathvertipm$sizea2))
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Figure 7.3: Probability density associated with primary size, unaltered

This distribution appears to be arguably right-skewed, but the mean appears to be near the boundary
value of zero. We have absorbed the size of zero into the Dormant stage, but there might be reason
to avoid using the gamma to avoid issues with zeros. So, we will try using the Gaussian distribution
here.

Although we wish to treat fecundity as a count, it is still not clear what underlying distribution we
should use. This package currently allows eight choices: Gaussian, gamma, Poisson, negative binomial,
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zero-inflated Poisson, zero-inflated negative binomial, zero-truncated Poisson, and zero-truncated neg-
ative binomial. To assess which to use, we should first assess whether the mean and variance of the
count are equal using a dispersion test. The Poisson distribution assumes that the mean and variance
are equal, and so we can test this assumption using a chi-squared test. If it is not significantly differ-
ent, then we may use some variant of the Poisson distribution. If the data are significantly over- or
under-dispersed, then we should use the negative binomial distribution. If fecundity of zero is possible
in reproductive stages, as in cases where reproductive status is defined by flowering rather than by
offspring production, then we should also test whether the number of zeros is significantly greater than
expected under these distributions, and use a zero-inflated distribution if so (if fecundity does not
equal zero in any reproductive individuals at all, then we should use a zero-truncated distribution).

Let’s look at a plot of the distribution of fecundity (figure 7.4).

hist(subset(lathvertipm, repstatus2 == 1)$feca2, main = "Fecundity",
xlab = "Intact seeds produced in occasion t")
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Figure 7.4: Histogram of fecundity

We see that the distribution seems to conform to a classic count variable with a very low mean
value. The first bar suggests that there may be too many zeros to use a standard Poisson or negative
binomial distribution. But to make that decision, let’s formally test the assumptions that the mean
equals the variance, and that there are not excess zeros. Both tests use chi-squared distribution-based
approaches, with the zero-inflation test based on van den Broek (1995). This is done automatically
via the hfv_qc() function.

hfv_qc(lathvertipm, vitalrates = c("surv", "obs", "size", "fec"),
juvestimate = "Sdl", indiv = "individ", year = "year2")

> Survival:
>
> Data subset has 43 variables and 2246 transitions.
>
> Variable alive3 has 0 missing values.
> Variable alive3 is a binomial variable.
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>
>
> Observation status:
>
> Data subset has 43 variables and 2121 transitions.
>
> Variable obsstatus3 has 0 missing values.
> Variable obsstatus3 is a binomial variable.
>
>
> Primary size:
>
> Data subset has 43 variables and 1916 transitions.
>
> Variable sizea3 has 0 missing values.
> Variable sizea3 appears to be a floating point variable.
> 1256 elements are not integers.
> The minimum value of sizea3 is 3.4 and the maximum is 6646.
> The mean value of sizea3 is 512.8 and the variance is 507200.
> The value of the Shapiro-Wilk test of normality is 0.7134 with P = 3.014e-49.
> Variable sizea3 differs significantly from a Gaussian distribution.
>
> Variable sizea3 is fully positive, lacking even 0s.
>
>
> Reproductive status:
>
> Data subset has 43 variables and 1916 transitions.
>
> Variable repstatus3 has 0 missing values.
> Variable repstatus3 is a binomial variable.
>
>
> Fecundity:
>
> Data subset has 43 variables and 2246 transitions.
>
> Variable feca2 has 0 missing values.
> Variable feca2 appears to be an integer variable.
>
> Variable feca2 is fully non-negative.
>
> Overdispersion test:
> Mean feca2 is 1.282
> The variance in feca2 is 23.21
> The probability of this dispersion level by chance assuming that
> the true mean feca2 = variance in feca2,
> and an alternative hypothesis of overdispersion, is 0
> Variable feca2 is significantly overdispersed.
>
> Zero-inflation and truncation tests:



7.2. CREATING IPMS IN LEFKO3 327

> Mean lambda in feca2 is 0.2774
> The actual number of 0s in feca2 is 1980
> The expected number of 0s in feca2 under the null hypothesis is 623
> The probability of this deviation in 0s from expectation by chance is 0
> Variable feca2 is significantly zero-inflated.
>
>
> Juvenile survival:
>
> Data subset has 43 variables and 281 transitions.
>
> Variable alive3 has 0 missing values.
> Variable alive3 is a binomial variable.
>
>
> Juvenile observation status:
>
> Data subset has 43 variables and 210 transitions.
>
> Variable obsstatus3 has 0 missing values.
> Variable obsstatus3 is a binomial variable.
>
>
> Juvenile primary size:
>
> Data subset has 43 variables and 193 transitions.
>
> Variable sizea3 has 0 missing values.
> Variable sizea3 appears to be a floating point variable.
> 127 elements are not integers.
> The minimum value of sizea3 is 2.1 and the maximum is 61.
> The mean value of sizea3 is 11.23 and the variance is 50.81.
> The value of the Shapiro-Wilk test of normality is 0.5997 with P = 5.72e-21.
> Variable sizea3 differs significantly from a Gaussian distribution.
>
> Variable sizea3 is fully positive, lacking even 0s.
>
>
> Juvenile reproductive status:
>
> Data subset has 43 variables and 193 transitions.
>
> Variable repstatus3 has 0 missing values.
> Variable repstatus3 is a binomial variable.
>
>
> Juvenile maturity status:
>
> Data subset has 43 variables and 210 transitions.
>
> Variable matstatus3 has 0 missing values.
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> Variable matstatus3 is a binomial variable.

Such significant results for both tests show us that we should use a zero-inflated negative binomial
distribution for fecundity.

Now we will create supplement tables to provide extra data for matrix estimation that is not
included in the main demographic dataset. Specifically, we will provide the seed dormancy probability
and germination rate, which are given as transitions from the dormant seed stage to another year of
seed dormancy or to the germinated seedling stage, respectively. We assume that the germination rate
is the same regardless of whether seed was produced in the previous year or has been in the seedbank
for longer. We will incorporate these terms both as fixed constants for specific transitions within the
resulting matrices, and as multipliers for fecundity, since ultimately fecundity will be estimated as the
production of seed multiplied by the seed germination rate or the seed dormancy rate. Because some
individuals stay in the seedling stage for only one year, and the seed stage itself cannot be observed
and so does not exist in the dataset, we will also set a proxy set of transitions so that R assumes that
the transitions from seed in occasion t-1 to seedling in occasion t to all mature stages in occasion t+1
are equal to the equivalent transitions from seedling in both occasions t-1 and t.

We will start with the ahistorical case, and then move on to the historical case, where we also
need to input the corresponding stages in occasion t-1 and transition types from occasion t-1 to t
for each transition. Note the use of the "rep", "mat", and "npr" designations in Stage1 - these are
abbreviations telling R to use all reproductive stages, all mature stages, or all non-propagule stages
(mature stages plus the seedling stage) in general, respectively.

lathsupp2 <- supplemental(stage3 = c("Sd", "Sdl", "Sd", "Sdl"),
stage2 = c("Sd", "Sd", "rep", "rep"),
givenrate = c(0.345, 0.054, NA, NA),
multiplier = c(NA, NA, 0.345, 0.054),
type = c(1, 1, 3, 3), stageframe = lathframeipm, historical = FALSE)

lathsupp3 <- supplemental(stage3 = c("Sd","Sd","Sdl","Sdl","npr","Sd","Sdl"),
stage2 = c("Sd", "Sd", "Sd", "Sd", "Sdl", "rep", "rep"),
stage1 = c("Sd", "rep", "Sd", "rep", "Sd", "mat", "mat"),
eststage3 = c(NA, NA, NA, NA, "npr", NA, NA),
eststage2 = c(NA, NA, NA, NA, "Sdl", NA, NA),
eststage1 = c(NA, NA, NA, NA, "Sdl", NA, NA),
givenrate = c(0.345, 0.345, 0.054, 0.054, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, 0.345, 0.054),
type = c(1, 1, 1, 1, 1, 3, 3), type_t12 = c(1, 2, 1, 2, 1, 1, 1),
stageframe = lathframeipm, historical = TRUE)

lathsupp2
> stage3 stage2 stage1 eststage3 eststage2 eststage1 givenrate multiplier
> 1 Sd Sd <NA> <NA> <NA> <NA> 0.345 1.000
> 2 Sdl Sd <NA> <NA> <NA> <NA> 0.054 1.000
> 3 Sd rep <NA> <NA> <NA> <NA> NA 0.345
> 4 Sdl rep <NA> <NA> <NA> <NA> NA 0.054
> convtype convtype_t12
> 1 1 1
> 2 1 1
> 3 3 1
> 4 3 1
lathsupp3
> stage3 stage2 stage1 eststage3 eststage2 eststage1 givenrate multiplier
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> 1 Sd Sd Sd <NA> <NA> <NA> 0.345 1.000
> 2 Sd Sd rep <NA> <NA> <NA> 0.345 1.000
> 3 Sdl Sd Sd <NA> <NA> <NA> 0.054 1.000
> 4 Sdl Sd rep <NA> <NA> <NA> 0.054 1.000
> 5 npr Sdl Sd npr Sdl Sdl NA 1.000
> 6 Sd rep mat <NA> <NA> <NA> NA 0.345
> 7 Sdl rep mat <NA> <NA> <NA> NA 0.054
> convtype convtype_t12
> 1 1 1
> 2 1 2
> 3 1 1
> 4 1 2
> 5 1 1
> 6 3 1
> 7 3 1

7.2.3 Estimating vital rate models
Integral projection models require functions of vital rates to populate them. Here, we will develop
these functions as linear models using modelsearch(). First, we will create the historical models to
assess whether history is a significant influence on vital rates. Note that we have set the appropriate
size and fecundity distributions through the settings sizedist = "gamma", fecdist = "negbin", and
fec.zero = TRUE. We have also set suite = "size", because we have not stratified our size classes
by reproductive status.

lathmodels3ipm <- modelsearch(lathvertipm, historical = TRUE, approach= "mixed",
suite = "size", vitalrates = c("surv", "obs", "size", "fec"),
juvestimate = "Sdl", bestfit = "AICc&k", sizedist = "Gaussian",
fecdist = "negbin", fec.zero = TRUE, indiv = "individ", year = "year2",
year.as.random = TRUE, juvsize = TRUE, show.model.tables = TRUE, quiet = TRUE)

Now let’s see a summary.

summary(lathmodels3ipm)
> This LefkoMod object includes 7 linear models.
> Best-fit model criterion used: aicc&k
>
>
>
> Survival model:
>
> Call: stats::glm(formula = alive3 ~ sizea1 + sizea2 + sizea1:sizea2 +
> 1, family = "binomial", data = subdata)
>
> Coefficients:
> (Intercept) sizea1 sizea2 sizea1:sizea2
> 2.161e+00 1.704e-03 1.145e-03 -4.636e-07
>
> Degrees of Freedom: 2245 Total (i.e. Null); 2242 Residual
> Null Deviance: 965.1
> Residual Deviance: 892.4 AIC: 900.4
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>
>
>
> Observation model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: obsstatus3 ~ (1 | year2)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 1351.5346 1362.8539 -673.7673 1347.5346 2119
> Random effects:
> Groups Name Std.Dev.
> year2 (Intercept) 0
> Number of obs: 2121, groups: year2, 3
> Fixed Effects:
> (Intercept)
> 2.235
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Size model:
> Linear mixed model fit by REML ['lmerMod']
> Formula: sizea3 ~ sizea1 + sizea2 + (1 | year2) + (1 | individ) + sizea1:sizea2
> Data: subdata
> REML criterion at convergence: 29132.25
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 0.0
> year2 (Intercept) 247.2
> Residual 480.4
> Number of obs: 1916, groups: individ, 845; year2, 3
> Fixed Effects:
> (Intercept) sizea1 sizea2 sizea1:sizea2
> 8.998e+01 3.119e-01 5.954e-01 -9.417e-05
> fit warnings:
> Some predictor variables are on very different scales: consider rescaling
> optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Secondary size model:
> [1] 1
>
>
>
> Tertiary size model:
> [1] 1
>
>
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>
> Reproductive status model:
> [1] 1
>
>
>
> Fecundity model:
> Formula: feca2 ~ sizea2 + (1 | year2) + (1 | individ)
> Zero inflation: ~sizea1 + sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik df.resid
> 2895.248 2952.417 -1437.624 2236
> Random-effects (co)variances:
>
> Conditional model:
> Groups Name Std.Dev.
> year2 (Intercept) 0.1241
> individ (Intercept) 0.3508
>
> Zero-inflation model:
> Groups Name Std.Dev.
> year2 (Intercept) 0.3979
> individ (Intercept) 1.0249
>
> Number of obs: 2246 / Conditional model: year2, 3; individ, 931 / Zero-inflation model: year2, 3; individ, 931
>
> Dispersion parameter for nbinom2 family (): 2.42
>
> Fixed Effects:
>
> Conditional model:
> (Intercept) sizea2
> 1.6982784 0.0003123
>
> Zero-inflation model:
> (Intercept) sizea1 sizea2
> 4.1155831 -0.0004907 -0.0017048
>
>
> Juvenile survival model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: alive3 ~ (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 323.6696 334.5847 -158.8348 317.6696 278
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 0.0003658
> year2 (Intercept) 0.0000000
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> Number of obs: 281, groups: individ, 281; year2, 3
> Fixed Effects:
> (Intercept)
> 1.084
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Juvenile observation model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: obsstatus3 ~ sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 61.3733 74.7617 -26.6867 53.3733 206
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 53.003
> year2 (Intercept) 1.206
> Number of obs: 210, groups: individ, 210; year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 12.83279 0.03985
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Juvenile size model:
> Linear mixed model fit by REML ['lmerMod']
> Formula: sizea3 ~ sizea2 + (1 | year2)
> Data: subdata
> REML criterion at convergence: 1243.682
> Random effects:
> Groups Name Std.Dev.
> year2 (Intercept) 1.955
> Residual 5.995
> Number of obs: 193, groups: year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 3.0848 0.8465
>
>
>
> Juvenile secondary size model:
> [1] 1
>
>
>
> Juvenile tertiary size model:
> [1] 1
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>
>
>
> Juvenile reproduction model:
> [1] 1
>
>
>
> Juvenile maturity model:
> [1] 1
>
>
>
>
>
> Number of models in survival table: 5
>
> Number of models in observation table: 5
>
> Number of models in size table: 5
>
> Number of models in secondary size table: 1
>
> Number of models in tertiary size table: 1
>
> Number of models in reproduction status table: 1
>
> Number of models in fecundity table: 25
>
> Number of models in juvenile survival table: 2
>
> Number of models in juvenile observation table: 2
>
> Number of models in juvenile size table: 2
>
> Number of models in juvenile secondary size table: 1
>
> Number of models in juvenile tertiary size table: 1
>
> Number of models in juvenile reproduction table: 1
>
> Number of models in juvenile maturity table: 1
>
>
>
>
>
> General model parameter names (column 1), and
> specific names used in these models (column 2):
> parameter_names mainparams
> 1 time t year2
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> 2 individual individ
> 3 patch patch
> 4 alive in time t+1 surv3
> 5 observed in time t+1 obs3
> 6 sizea in time t+1 size3
> 7 sizeb in time t+1 sizeb3
> 8 sizec in time t+1 sizec3
> 9 reproductive status in time t+1 repst3
> 10 fecundity in time t+1 fec3
> 11 fecundity in time t fec2
> 12 sizea in time t size2
> 13 sizea in time t-1 size1
> 14 sizeb in time t sizeb2
> 15 sizeb in time t-1 sizeb1
> 16 sizec in time t sizec2
> 17 sizec in time t-1 sizec1
> 18 reproductive status in time t repst2
> 19 reproductive status in time t-1 repst1
> 20 maturity status in time t+1 matst3
> 21 maturity status in time t matst2
> 22 age in time t age
> 23 density in time t density
> 24 individual covariate a in time t indcova2
> 25 individual covariate a in time t-1 indcova1
> 26 individual covariate b in time t indcovb2
> 27 individual covariate b in time t-1 indcovb1
> 28 individual covariate c in time t indcovc2
> 29 individual covariate c in time t-1 indcovc1
> 30 stage group in time t group2
> 31 stage group in time t-1 group1
>
>
>
>
>
> Quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Survival accuracy is 0.944.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Observation accuracy is 0.903.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Primary size pseudo R-squared is 0.571.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Fecundity pseudo R-squared is 0.271.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile survival accuracy is 0.747.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
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> Juvenile observation accuracy is 1.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile primary size pseudo R-squared is 0.332.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity probability not estimated.

We see the influence of history on survival and size and fecundity. So, the historical IPM is the
correct choice here. However, we will also create an ahistorical IPM for comparison. For that purpose,
we will create the ahistorical vital rate model set.

lathmodels2ipm <- modelsearch(lathvertipm, historical = FALSE,
approach = "mixed", suite = "size",
vitalrates = c("surv", "obs", "size", "fec"), juvestimate = "Sdl",
bestfit = "AICc&k", sizedist = "gaussian", fecdist = "negbin",
fec.zero = TRUE, indiv = "individ", year = "year2", year.as.random = TRUE,
juvsize = TRUE, show.model.tables = TRUE, quiet = TRUE)

Let’s see a summary.

summary(lathmodels2ipm)
> This LefkoMod object includes 7 linear models.
> Best-fit model criterion used: aicc&k
>
>
>
> Survival model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: alive3 ~ (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 709.9383 727.0890 -351.9691 703.9383 2243
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 14.6
> year2 (Intercept) 0.0
> Number of obs: 2246, groups: individ, 931; year2, 3
> Fixed Effects:
> (Intercept)
> 10.03
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Observation model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: obsstatus3 ~ (1 | year2) + (1 | individ)
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> Data: subdata
> AIC BIC logLik deviance df.resid
> 1337.3193 1354.2982 -665.6596 1331.3193 2118
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 1.216
> year2 (Intercept) 0.000
> Number of obs: 2121, groups: individ, 858; year2, 3
> Fixed Effects:
> (Intercept)
> 2.788
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Size model:
> Linear mixed model fit by REML ['lmerMod']
> Formula: sizea3 ~ sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> REML criterion at convergence: 29294.15
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 0.0
> year2 (Intercept) 210.9
> Residual 504.6
> Number of obs: 1916, groups: individ, 845; year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 164.0695 0.6211
> optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Secondary size model:
> [1] 1
>
>
>
> Tertiary size model:
> [1] 1
>
>
>
> Reproductive status model:
> [1] 1
>
>
>
> Fecundity model:
> Formula: feca2 ~ sizea2 + (1 | year2) + (1 | individ)
> Zero inflation: ~sizea2 + (1 | year2) + (1 | individ)
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> Data: subdata
> AIC BIC logLik df.resid
> 2905.970 2957.422 -1443.985 2237
> Random-effects (co)variances:
>
> Conditional model:
> Groups Name Std.Dev.
> year2 (Intercept) 0.1432
> individ (Intercept) 0.3305
>
> Zero-inflation model:
> Groups Name Std.Dev.
> year2 (Intercept) 0.3898
> individ (Intercept) 1.0047
>
> Number of obs: 2246 / Conditional model: year2, 3; individ, 931 / Zero-inflation model: year2, 3; individ, 931
>
> Dispersion parameter for nbinom2 family (): 2.17
>
> Fixed Effects:
>
> Conditional model:
> (Intercept) sizea2
> 1.736911 0.000286
>
> Zero-inflation model:
> (Intercept) sizea2
> 4.014336 -0.001969
>
>
> Juvenile survival model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: alive3 ~ (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 323.6696 334.5847 -158.8348 317.6696 278
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 0.0003658
> year2 (Intercept) 0.0000000
> Number of obs: 281, groups: individ, 281; year2, 3
> Fixed Effects:
> (Intercept)
> 1.084
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Juvenile observation model:
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> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: obsstatus3 ~ sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 61.3733 74.7617 -26.6867 53.3733 206
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 53.003
> year2 (Intercept) 1.206
> Number of obs: 210, groups: individ, 210; year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 12.83279 0.03985
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Juvenile size model:
> Linear mixed model fit by REML ['lmerMod']
> Formula: sizea3 ~ sizea2 + (1 | year2)
> Data: subdata
> REML criterion at convergence: 1243.682
> Random effects:
> Groups Name Std.Dev.
> year2 (Intercept) 1.955
> Residual 5.995
> Number of obs: 193, groups: year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 3.0848 0.8465
>
>
>
> Juvenile secondary size model:
> [1] 1
>
>
>
> Juvenile tertiary size model:
> [1] 1
>
>
>
> Juvenile reproduction model:
> [1] 1
>
>
>
> Juvenile maturity model:
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> [1] 1
>
>
>
>
>
> Number of models in survival table: 2
>
> Number of models in observation table: 2
>
> Number of models in size table: 2
>
> Number of models in secondary size table: 1
>
> Number of models in tertiary size table: 1
>
> Number of models in reproduction status table: 1
>
> Number of models in fecundity table: 4
>
> Number of models in juvenile survival table: 2
>
> Number of models in juvenile observation table: 2
>
> Number of models in juvenile size table: 2
>
> Number of models in juvenile secondary size table: 1
>
> Number of models in juvenile tertiary size table: 1
>
> Number of models in juvenile reproduction table: 1
>
> Number of models in juvenile maturity table: 1
>
>
>
>
>
> General model parameter names (column 1), and
> specific names used in these models (column 2):
> parameter_names mainparams
> 1 time t year2
> 2 individual individ
> 3 patch patch
> 4 alive in time t+1 surv3
> 5 observed in time t+1 obs3
> 6 sizea in time t+1 size3
> 7 sizeb in time t+1 sizeb3
> 8 sizec in time t+1 sizec3
> 9 reproductive status in time t+1 repst3
> 10 fecundity in time t+1 fec3
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> 11 fecundity in time t fec2
> 12 sizea in time t size2
> 13 sizea in time t-1 size1
> 14 sizeb in time t sizeb2
> 15 sizeb in time t-1 sizeb1
> 16 sizec in time t sizec2
> 17 sizec in time t-1 sizec1
> 18 reproductive status in time t repst2
> 19 reproductive status in time t-1 repst1
> 20 maturity status in time t+1 matst3
> 21 maturity status in time t matst2
> 22 age in time t age
> 23 density in time t density
> 24 individual covariate a in time t indcova2
> 25 individual covariate a in time t-1 indcova1
> 26 individual covariate b in time t indcovb2
> 27 individual covariate b in time t-1 indcovb1
> 28 individual covariate c in time t indcovc2
> 29 individual covariate c in time t-1 indcovc1
> 30 stage group in time t group2
> 31 stage group in time t-1 group1
>
>
>
>
>
> Quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Survival accuracy is 0.977.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Observation accuracy is 0.903.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Primary size pseudo R-squared is 0.525.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Fecundity pseudo R-squared is 0.236.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile survival accuracy is 0.747.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
> Juvenile observation accuracy is 1.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile primary size pseudo R-squared is 0.332.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity probability not estimated.
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7.2.4 Bringing our discretized IPMs to life

The typical IPM is ahistorical and so will utilize only an ahistorical set of vital rate models to populate
its matrices. Let’s do that and take a look at the result.

lathmat2ipm <- flefko2(stageframe = lathframeipm, modelsuite = lathmodels2ipm,
supplement = lathsupp2, data = lathvertipm, reduce = FALSE)

summary(lathmat2ipm)
>
> This ahistorical lefkoMat object contains 3 matrices.
>
> Each matrix is square with 103 rows and columns, and a total of 10609 elements.
> A total of 26947 survival transitions were estimated, with 8982.333 per matrix.
> A total of 600 fecundity transitions were estimated, with 200 per matrix.
> This lefkoMat object covers 1 population, 1 patch, and 3 time steps.
>
> Vital rate modeling quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity transition probability not estimated.
>
> Survival probability sum check (each matrix represented by column in order):
> [,1] [,2] [,3]
> Min. 0.000 0.000 0.000
> 1st Qu. 0.994 0.970 0.996
> Median 1.000 1.000 1.000
> Mean 0.961 0.929 0.965
> 3rd Qu. 1.000 1.000 1.000
> Max. 1.000 1.000 1.000

The ahistorical IPM is composed of three matrices, covering each of the time steps. These are
large matrices - with 103 rows and columns, they include 10,609 elements each. Of these, on average
9182.33 elements in each matrix are non-zero, meaning that these matrices are not only large but also
quite dense (86.6% of elements are estimated).

We will now create the historical suite of matrices covering the years of study. These matrices
will be extremely large - large enough that some computers might have difficulty with them. If you
encounter an error message telling you that you have run out of memory, then please try this on a
more powerful computer :) .
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lathmat3ipm <- flefko3(stageframe = lathframeipm, modelsuite = lathmodels3ipm,
supplement = lathsupp3, data = lathvertipm, reduce = FALSE)

summary(lathmat3ipm)
>
> This historical lefkoMat object contains 3 matrices.
>
> Each matrix is square with 10609 rows and columns, and a total of 112550881 elements.
> A total of 2684709 survival transitions were estimated, with 894903 per matrix.
> A total of 60600 fecundity transitions were estimated, with 20200 per matrix.
> This lefkoMat object covers 1 population, 1 patch, and 3 time steps.
>
> Vital rate modeling quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity transition probability not estimated.
>
> Survival probability sum check (each matrix represented by column in order):
> [,1] [,2] [,3]
> Min. 0.000 0.000 0.000
> 1st Qu. 0.993 0.986 0.992
> Median 0.998 0.998 0.998
> Mean 0.958 0.947 0.957
> 3rd Qu. 0.999 0.999 0.999
> Max. 1.000 1.000 1.000

These are giant matrices. With 10,609 rows and columns, there are a total of 112,550,881 elements
per matrix. But they are also amazingly sparse - with 915,103 elements estimated, only 0.8% of
elements per matrix are non-zero. The survival probability sums all look good, so we appear to have
no problems with overly large given and proxy survival transitions provided through our supplemental
tables.

At this stage, we have created our IPMs. Congratulations! We can also create arithmetic mean
matrix versions of each, as below.

lath2ipmmean <- lmean(lathmat2ipm)
lath3ipmmean <- lmean(lathmat3ipm)

summary(lath2ipmmean)
>
> This ahistorical lefkoMat object contains 1 matrix.
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>
> Each matrix is square with 103 rows and columns, and a total of 10609 elements.
> A total of 9111 survival transitions were estimated, with 9111 per matrix.
> A total of 200 fecundity transitions were estimated, with 200 per matrix.
> This lefkoMat object covers 1 population, 1 patch, and 0 time steps.
>
> Vital rate modeling quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity transition probability not estimated.
>
> Survival probability sum check (each matrix represented by column in order):
> [,1]
> Min. 0.000
> 1st Qu. 0.987
> Median 1.000
> Mean 0.952
> 3rd Qu. 1.000
> Max. 1.000
summary(lath3ipmmean)
>
> This historical lefkoMat object contains 1 matrix.
>
> Each matrix is square with 10609 rows and columns, and a total of 112550881 elements.
> A total of 920292 survival transitions were estimated, with 920292 per matrix.
> A total of 20200 fecundity transitions were estimated, with 20200 per matrix.
> This lefkoMat object covers 1 population, 1 patch, and 0 time steps.
>
> Vital rate modeling quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
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> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity transition probability not estimated.
>
> Survival probability sum check (each matrix represented by column in order):
> [,1]
> Min. 0.000
> 1st Qu. 0.989
> Median 0.998
> Mean 0.954
> 3rd Qu. 0.999
> Max. 1.000

7.3 Quality control
IPMs are difficult to inspect because of their size. Package lefko3 includes a number of ways to assess
the overall quality of an IPM. Here, we will cover three main methods, each covering a different aspect
of the process. First, we may look at quality control information about our vital rate models. Let’s
look at a summary of the ahistorical vital rate models.

summary(lathmodels2ipm)
> This LefkoMod object includes 7 linear models.
> Best-fit model criterion used: aicc&k
>
>
>
> Survival model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: alive3 ~ (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 709.9383 727.0890 -351.9691 703.9383 2243
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 14.6
> year2 (Intercept) 0.0
> Number of obs: 2246, groups: individ, 931; year2, 3
> Fixed Effects:
> (Intercept)
> 10.03
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Observation model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
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> Family: binomial ( logit )
> Formula: obsstatus3 ~ (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 1337.3193 1354.2982 -665.6596 1331.3193 2118
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 1.216
> year2 (Intercept) 0.000
> Number of obs: 2121, groups: individ, 858; year2, 3
> Fixed Effects:
> (Intercept)
> 2.788
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Size model:
> Linear mixed model fit by REML ['lmerMod']
> Formula: sizea3 ~ sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> REML criterion at convergence: 29294.15
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 0.0
> year2 (Intercept) 210.9
> Residual 504.6
> Number of obs: 1916, groups: individ, 845; year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 164.0695 0.6211
> optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Secondary size model:
> [1] 1
>
>
>
> Tertiary size model:
> [1] 1
>
>
>
> Reproductive status model:
> [1] 1
>
>
>
> Fecundity model:
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> Formula: feca2 ~ sizea2 + (1 | year2) + (1 | individ)
> Zero inflation: ~sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik df.resid
> 2905.970 2957.422 -1443.985 2237
> Random-effects (co)variances:
>
> Conditional model:
> Groups Name Std.Dev.
> year2 (Intercept) 0.1432
> individ (Intercept) 0.3305
>
> Zero-inflation model:
> Groups Name Std.Dev.
> year2 (Intercept) 0.3898
> individ (Intercept) 1.0047
>
> Number of obs: 2246 / Conditional model: year2, 3; individ, 931 / Zero-inflation model: year2, 3; individ, 931
>
> Dispersion parameter for nbinom2 family (): 2.17
>
> Fixed Effects:
>
> Conditional model:
> (Intercept) sizea2
> 1.736911 0.000286
>
> Zero-inflation model:
> (Intercept) sizea2
> 4.014336 -0.001969
>
>
> Juvenile survival model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: alive3 ~ (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 323.6696 334.5847 -158.8348 317.6696 278
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 0.0003658
> year2 (Intercept) 0.0000000
> Number of obs: 281, groups: individ, 281; year2, 3
> Fixed Effects:
> (Intercept)
> 1.084
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
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>
> Juvenile observation model:
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [glmerMod]
> Family: binomial ( logit )
> Formula: obsstatus3 ~ sizea2 + (1 | year2) + (1 | individ)
> Data: subdata
> AIC BIC logLik deviance df.resid
> 61.3733 74.7617 -26.6867 53.3733 206
> Random effects:
> Groups Name Std.Dev.
> individ (Intercept) 53.003
> year2 (Intercept) 1.206
> Number of obs: 210, groups: individ, 210; year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 12.83279 0.03985
> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
>
>
>
> Juvenile size model:
> Linear mixed model fit by REML ['lmerMod']
> Formula: sizea3 ~ sizea2 + (1 | year2)
> Data: subdata
> REML criterion at convergence: 1243.682
> Random effects:
> Groups Name Std.Dev.
> year2 (Intercept) 1.955
> Residual 5.995
> Number of obs: 193, groups: year2, 3
> Fixed Effects:
> (Intercept) sizea2
> 3.0848 0.8465
>
>
>
> Juvenile secondary size model:
> [1] 1
>
>
>
> Juvenile tertiary size model:
> [1] 1
>
>
>
> Juvenile reproduction model:
> [1] 1
>
>
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>
> Juvenile maturity model:
> [1] 1
>
>
>
>
>
> Number of models in survival table: 2
>
> Number of models in observation table: 2
>
> Number of models in size table: 2
>
> Number of models in secondary size table: 1
>
> Number of models in tertiary size table: 1
>
> Number of models in reproduction status table: 1
>
> Number of models in fecundity table: 4
>
> Number of models in juvenile survival table: 2
>
> Number of models in juvenile observation table: 2
>
> Number of models in juvenile size table: 2
>
> Number of models in juvenile secondary size table: 1
>
> Number of models in juvenile tertiary size table: 1
>
> Number of models in juvenile reproduction table: 1
>
> Number of models in juvenile maturity table: 1
>
>
>
>
>
> General model parameter names (column 1), and
> specific names used in these models (column 2):
> parameter_names mainparams
> 1 time t year2
> 2 individual individ
> 3 patch patch
> 4 alive in time t+1 surv3
> 5 observed in time t+1 obs3
> 6 sizea in time t+1 size3
> 7 sizeb in time t+1 sizeb3
> 8 sizec in time t+1 sizec3
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> 9 reproductive status in time t+1 repst3
> 10 fecundity in time t+1 fec3
> 11 fecundity in time t fec2
> 12 sizea in time t size2
> 13 sizea in time t-1 size1
> 14 sizeb in time t sizeb2
> 15 sizeb in time t-1 sizeb1
> 16 sizec in time t sizec2
> 17 sizec in time t-1 sizec1
> 18 reproductive status in time t repst2
> 19 reproductive status in time t-1 repst1
> 20 maturity status in time t+1 matst3
> 21 maturity status in time t matst2
> 22 age in time t age
> 23 density in time t density
> 24 individual covariate a in time t indcova2
> 25 individual covariate a in time t-1 indcova1
> 26 individual covariate b in time t indcovb2
> 27 individual covariate b in time t-1 indcovb1
> 28 individual covariate c in time t indcovc2
> 29 individual covariate c in time t-1 indcovc1
> 30 stage group in time t group2
> 31 stage group in time t-1 group1
>
>
>
>
>
> Quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Survival accuracy is 0.977.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Observation accuracy is 0.903.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Primary size pseudo R-squared is 0.525.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Fecundity pseudo R-squared is 0.236.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile survival accuracy is 0.747.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
> Juvenile observation accuracy is 1.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile primary size pseudo R-squared is 0.332.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity probability not estimated.
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At the very bottom of our output is a section labelled Quality control. We see, first of all, a
statement of which of our fourteen possible vital rate models were estimated. For each estimated
model, we see the number of individuals and actual transitions used to estimate the respective model.
In general, the higher the number of individuals and transitions used to estimate the model, the better
the quality of the model and the higher the statistical power. The former number, the number of
individuals, particularly gives us a sense of the overall level of pseudoreplication that might be inherent
in our analysis, since transitions from the same individual are obviously related and not statistically
independent of one another.

Our output also includes information on the accuracy of binomial models and pseudo-R2 of size
and fecundity models. Accuracy is calculated as the proportion of predicted responses from a binomial
model equal to the actual responses given each data point. Pseudo-R2 is calculated differently depend-
ing on the distribution and modeling form used. Accuracy and pseudo-R2 both vary from 0.0 to 1.0,
and the higher the number the better the quality of the model. What is a “good” quality of model
is difficult to say, but prediction should probably not be attempted with vital rate models under 90%
accuracy or pseudo-R2. Naturally, such values may be difficult to achieve in most analyses.

The next method of assessing quality control focuses on the IPMs, themselves. Let’s take a look
at a summary of the ahistorical IPM.

summary(lathmat2ipm)
>
> This ahistorical lefkoMat object contains 3 matrices.
>
> Each matrix is square with 103 rows and columns, and a total of 10609 elements.
> A total of 26947 survival transitions were estimated, with 8982.333 per matrix.
> A total of 600 fecundity transitions were estimated, with 200 per matrix.
> This lefkoMat object covers 1 population, 1 patch, and 3 time steps.
>
> Vital rate modeling quality control:
>
> Survival estimated with 931 individuals and 2246 individual transitions.
> Observation estimated with 858 individuals and 2121 individual transitions.
> Primary size estimated with 845 individuals and 1916 individual transitions.
> Secondary size transition not estimated.
> Tertiary size transition not estimated.
> Reproduction probability not estimated.
> Fecundity estimated with 931 individuals and 2246 individual transitions.
> Juvenile survival estimated with 281 individuals and 281 individual transitions.
> Juvenile observation estimated with 210 individuals and 210 individual transitions.
> Juvenile primary size estimated with 193 individuals and 193 individual transitions.
> Juvenile secondary size transition not estimated.
> Juvenile tertiary size transition not estimated.
> Juvenile reproduction probability not estimated.
> Juvenile maturity transition probability not estimated.
>
> Survival probability sum check (each matrix represented by column in order):
> [,1] [,2] [,3]
> Min. 0.000 0.000 0.000
> 1st Qu. 0.994 0.970 0.996
> Median 1.000 1.000 1.000
> Mean 0.961 0.929 0.965
> 3rd Qu. 1.000 1.000 1.000
> Max. 1.000 1.000 1.000
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Some of the output should be familiar, particularly the output related to the vital rate models.
The key output for us to look at here is at the bottom, under Survival probability sum check.
The columns in our U matrices should always sum to values between 0 and 1. The reason is that
the sum of each column should equal the probability of survival from whatever stage the column is
associated with in time t to time t+1, regardless of what stage the organism is in in the latter time.
In at least three circumstances, these sums may be greater than 1.0, and the user would need to
correct their IPMs in these cases to prevent odd analytical results and erroneous inferences. The first
circumstance is through the incorporation via supplement tables of fixed transition probabilities or
proxy values that are too high. Fixing an IPM in this case would mean reducing these fixed or proxy
values in the supplement table. The second circumstance is through the use of the midpoint method
in size transition probability estimation. The correct way to fix this is to use the cumulative density
function (CDF) method instead of the midpoint method. Fortunately, lefko3 uses the CDF method
by default. The third circumstance is through the incorporation of sizes not observed, or representing
strong outlier sizes. In these cases, it is possible for at least some of the resulting probabilities to be
estimated at unnatural levels. In this third case, the way to correct the problem is to remove the
outlier size from the classification in the stageframe.

Finally, there is at least one more method that we can use to assess the overall quality of an IPM.
That method is to assess the overall structure of the IPM. The best way to do this is to inspect the
elements themselves, perhaps by opening the IPM matrix in R Studio, or exporting it to Microsoft Excel
or another spreadsheet program for assessment. A more visual approach assessing just the structure
itself is to use the image3() function, which provides users with a means of assessing whether the
overall structure of the model “looks right”. For example, here we look at an image of the 1st matrix
in our ahistorical IPM (figure 7.5).

image3(lathmat2ipm, used = 1)
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Figure 7.5: Matrix image of the first ahistorical IPM. Red area corresponds to non-zero elements

> [[1]]
> NULL

We can also focus in on just the survival or fecundity transitions, as below. Note that in an ahistorical
IPM, we expect all fecundity values to be located toward the top of the matrix (figure 7.6).
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image3(lathmat2ipm, used = 1, type = "F")
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Figure 7.6: Matrix image of the first fecundity matrix in our ahistorical IPM. Red area corresponds
to non-zero elements

> [[1]]
> NULL

Other approaches to quality control are provided for other aspects of matrix analysis in lefko3.
At this point, we may move ahead and analyze the IPMs in the same ways that we might analyze

other kinds of MPMs.

7.4 Points to remember
1. IPMs assume a continuous distribution for size and integrate vital rates across this size metric

typically assuming a Gaussian size distribution. While theoretically different from MPMs, ul-
timately IPMs are discretized in ways that allow them to be created and analyzed exactly the
same way as function-based MPMs.

2. Package lefko3 allows the development of even extremely large numbers of size bins across the
range of a continuous size metric, using the "ipm" shorthand in the sf_create() function. With
only a few lines, a stageframe with hundreds of discretized size bins can be created and used to
create an IPM for analysis.

3. Quality control tools include the linear model accuracy and pseudo-R2 output from
modelsearch(), the output from summary() calls for IPMs created with flefko2() or
flefko3(), and visualization with image3().
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